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GENERAL INTRODUCTION 
 

Determining the composition of thin layers is increasingly important for a variety 

of industrial materials such as adhesives, coatings and microelectronics.   Secondary ion 

mass spectrometry (SIMS),1-3 Auger electron spectroscopy (AES),1-4 X-ray photoelectron 

spectroscopy (XPS),1-4 glow discharge optical emission spectroscopy (GDOES),1,3,5,6  

glow discharge mass spectrometry (GDMS),1,3,5,7 and laser ablation-inductively coupled 

plasma-mass spectrometry (LA-ICP-MS)7,8 are some of the techniques that are currently 

employed for the direct analysis of the sample surface.  Although these techniques do not 

suffer from the contamination problems that often plague sample dissolution studies, they 

do require matrix matched standards for quantification.  Often, these standards are not 

readily available. 

 Despite the costs of clean hoods, Teflon pipette tips and bottles, and pure acids, 

partial sample dissolution is the primary method used in the semiconductor industry to 

quantify surface impurities.  Specifically, vapor phase decomposition (VPD) coupled to 

ICP-MS9-12 or total reflection x-ray fluorescence (TXRF)13-15 provides elemental 

information from the top most surface layers at detection sensitivities in the 107-

1010atoms/cm2 range.12,15  The ability to quantify with standard solutions is a main 

advantage of these techniques. 

 Li and Houk16 applied a VPD-like technique to steel.  The signal ratio of trace 

element to matrix element was used for quantification.  Although controlled dissolution 

concentrations determined for some of the dissolved elements agreed with the certified 

values, concentrations determined for refractory elements (Ti, Nb and Ta) were too low.  

LA-ICP-MS and scanning electron microscopy (SEM) measurements indicated that 
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carbide grains distributed throughout the matrix were high in these refractory elements.  

These elements dissolved at a slower rate than the matrix element, Fe.  If the analyte 

element is not removed at a rate similar to the matrix element a true representation of the 

sample layer cannot be realized.  Specifically, the ratio of analyte signal to matrix 

element signal does not equal the actual ratio in the bulk sample.   

The objective of this work was to investigate the controlled dissolution of other 

materials, simpler than steel.  Matrices of copper, high copper alloy and NIST C1100 

brass were investigated but the matrix that showed the best agreement between measured 

and certified values was NIST 612 glass.  Further studies were conducted to limit the 

amount of surface layers removed for the NIST 612 matrix. 

  

REFERENCES 

1. J. C. Riviére, Surface Analytical Techniques, H. Fröhlich, P. B. Hirsch, N. F. 

Mott, A. J. Heeger, R. Brook, Eds. (Clarendon Press, Oxford, UK, 1990). 

2. F. Adams, L. Van Vaeck, R. Barrett, Spectrochim. Acta Part B 60, 13, (2005). 

3. K. Wagatsuma, “Comparison of Glow Discharge Atomic Spectrometry with 

Other Surface Analysis Methods,” in Glow Discharge Plasmas in Analytical 

Spectroscopy, R.K. Marcus and J. A. C. Broekaert, Eds. (J. Wiley & Sons, 

Chichester UK, 2003), Ch 9. 

4. F. Reniers and C. Tewell, J. Electron. Spectrosc. Relat. Phenom. 142, 1, (2005). 

5. J. Pisonero, B. Fernández, R. Pereiro, N. Bordel, A. Sanz-Medel, Trends in 

Analytical Chemistry 25, 11 (2006).  



www.manaraa.com

3 
 

6. K. Wagatsuma, “Surfaces, Thin Films and Coatings,” in Glow Discharge Plasmas 

in Analytical Spectroscopy, R.K. Marcus and J. A. C. Broekaert, Eds. (J. Wiley & 

Sons, Chichester UK, 2003), Ch 8. 

7. M. Resano, E. García-Ruiz, M. A. Belarra, F. Vanhaecke, K. S. McIntosh, Trends 

in Anal. Chem. doi:10.1016/j.trac.2007.01.015 (2007). 

8. J. Pisonero, J. Koch, M. Walle, W. Hartung, N. D. Spencer, D. Günther, Anal. 

Chem. 79, 2325 (2007). 

9. A. Krushevska, S. Tan, M. Passer, and X.R. Liu, J. Anal. At. Spectrom. 15, 1211 

(2000). 

10. E. Jones Ferrero and D. Posey, J. Anal. At. Spectrom. 17, 1194 (2002). 

11. A. Danel, T. Lardin, C. Giroud, and F. Tardif, Mater. Sci. Eng. 102, 213 (2003). 

12. M. B. Shabani, Y. Shiina, F. G. Kirscht, and Y. Shimanuki, Mater. Sci. Eng. B 

102, 238 (2003). 

13. D. Hellin, J. Rip, S. Arnauts, S. De Gendt, P. W. Mertens, C. Vinckier, 

Spectrochim. Acta Part B, 59, 1149, (2004). 

14. D. Hellin, V, Geens, I. Teerlinck, J, Van Steenbergen, J. Rip, W. Laureyn, G. 

Raskin, P. W. Mertens, S. De Gendt, C. Vinckier, Spectrochim. Acta Part B 60, 

209, (2005). 

15. D. Hellin, S. De Gendt, N. Valckx, P. Mertens, C. Vinckier, Spectrochim. Acta 

Part B 61, 496, (2006). 

16. F. Li and R. S. Houk, Applied Spectroscopy, 58, 776 (2004). 

 

 



www.manaraa.com

4 
 

CHAPTER 1 

 

CONTROLLED DISSOLUTION OF SILICON DIOXIDE LAYERS FOR 

ELEMENTAL ANALYSIS BY INDUCTIVELY COUPLED PLASMA-MASS 

SPECTROMETRY 

 

A paper to be submitted to Applied Spectroscopy 

 

Susan Lorge and R. S. Houk 

ABSTRACT 

 Dissolution procedures were developed to minimize the number of NIST 612 

glass surface layers removed without compromising trace metal sensitivity.  Varying 

dissolution time and hydrofluoric acid concentration resulted in the reproducible removal 

of SiO2 layers approximately 70 to 500 Å deep.   Dissolved trace metals were determined 

by high resolution inductively coupled plasma-mass spectrometry (ICP-MS).  The 

amount removed was determined from the concentration of a major element, Ca.  With 

the exception of Zn, trace metal concentrations agreed well with their certified values for 

removal depths of 500, 300 and 150 Å.  Zinc concentration was significantly high in all 

dissolutions indicating either a contamination problem or that Zn is removed at a faster 

rate than Ca.  For the dissolutions that removed 70 Å, Cr, Mn, Co, Sr, Cd, Ce, Dy, Er, Yb 

and U recovery results agreed with their true values, ~50 ppm.  However, Ti, As, Mo, Ba, 

and Th could not be determined because net intensities were below 3 σ of the blank.  

Copper, Pb and Zn exhibited concentrations that were well above their true values.  The 

high results for Cu and Pb were not pronounced in the dissolutions that removed 150 to 

500 Å.   
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INTRODUCTION   

In the semiconductor and material science industries, contamination-free surface 

layers are critical in the production of high performance products.   The need to verify 

surface cleanliness has led to advances in both surface and chemical analysis techniques.  

Surface techniques such as Auger electron spectroscopy (AES) and X-ray photoelectron 

spectroscopy (XPS) have been improved upon for decades.  To date, these techniques can 

provide depth resolution in the range of 5-10 Å.1 Additionally, AES in imaging mode can 

offer lateral resolution (10 nm) for spatial analysis.2    

Other surface analysis techniques that are common in laboratories that examine 

solid surfaces include: laser ablation-inductively coupled plasma-mass spectrometry (LA-

ICP-MS), glow discharge mass spectrometry (GDMS) glow discharge optical emission 

spectroscopy (GDOES) and static secondary ion mass spectrometry (sSIMS). Three of 

these techniques take advantage of the superior detection sensitivity and selectivity of 

mass spectrometry.  Static SIMS can provide elemental information from a single 

monolayer of material.1 The glow discharge techniques have demonstrated the potential 

for elemental analysis of layers less than 10 nm thick.3,4  At present, the LA-ICP-MS 

depth resolution is ~0.1 µm per pulse.3 Removal of very thin layers of surface material by 

LA-ICP-MS is currently being investigated by Günther et al.5   SIMS and LA-ICP-MS 

can provide lateral resolution (~µm).4,5 The glow discharge techniques cannot. 

One disadvantage common among all these techniques is that quantification 

requires matrix matched standards.  High energy ion scattering spectroscopy (high energy 

ISS), also known as Rutherford backscattering spectroscopy (RBS), can provide 
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quantitative analysis without the need for matrix matched solid standards.  It provides 

depth resolution on the order of a monolayer as well as lateral resolution.6 

For surface analysis techniques that require a sample dissolution step such as 

solution ICP-MS, a procedure known as vapor phase decomposition (VPD) is employed.  

The vapor phase decomposition technique is popular in the semiconductor industry to 

extract trace metals present on silicon wafer surfaces.  Briefly, the wafer is sealed in a 

chilled chamber and exposed to HF vapor.  The surface oxide layer (10-30 Å) and any 

impurities that might be present react with the HF.   Exposure time can vary from 20 

minutes to 12 hours.  After the oxide layer is etched, the hydrophobic silicon surface is 

scanned by an aqueous acid droplet (~100-500 µL) to collect the surface contaminants.7   

An evaporation step will often follow to remove most of the silicon and fluoride as 

volatile SiF4.  The concentrations of metal contaminants in the final solution can then be 

determined by TXRF or ICP-MS.  Optimization of VPD-ICP-MS7-10and VPD-TXRF 11-13 

have been described elsewhere.   The ability to quantify trace elements with the use of 

standard solutions is a clear advantage of these techniques.  However, providing a clean 

environment for sample preparation is costly.  

Li and Houk14 modified the vapor phase decomposition method in an effort to 

apply this powerful controlled dissolution technique to steel. Quantification was done 

relative to the major element, Fe.  Problems arose when some of the trace element 

concentrations did not correspond to the certified concentrations.  Elements like Ti, Nb 

and Ta, gave low results for the controlled dissolution which indicated that these 

elements dissolved more slowly than the Fe.  Further LA-ICP-MS and scanning electron 



www.manaraa.com

7 
 

microscopy (SEM) experiments determined that these problem elements were associated 

with refractory carbide grains distributed throughout the Fe matrix.   

It is believed that trace metals homogeneously distributed throughout the matrix 

would have uniform removal rates.  At the start of this study, various simpler matrices 

than steel were investigated.15   NIST 612 glass was found to work best.  Efforts were 

made to limit the amount of surface dissolved while still removing enough material to 

determine the trace metals. 

 

EXPERIMENTAL 

Dissolution Procedure.  As shown in Figure 1.1, a cylindrical  hole (5 mm 

diameter, ~0.5 mm depth) was diamond cut into a glass wafer to hold the etch solution 

for partial dissolution.  The sample was a glass standard reference material (NIST 612, 

Trace Elements in Glass) with nominal trace element concentrations of 50 mg/kg (ppm).  

The same sample was etched repeatedly for fixed times with an etch solution (2 µL) that 

evenly coated the bottom of the hole.  After a five or ten second waiting period, a wash of 

dilute HNO3 (4 µL) was transferred into the hole.  The etch solution and wash solution 

were then withdrawn and diluted to 1 mL with more wash solution.  Etches were 

performed on separate days.  Each day three replicate samples were prepared. 

All sample preparation was carried out in a clean hood (Class 100, Design 

Filtration Inc.) to reduce sample contamination.  Teflon bottles (FEP, Nalge Nunc Int.) 

were acid vapor washed with nitric acid (~70%) for at least 24 hours prior to use.  Teflon 

pipette tips (PFA, Elemental Scientific Inc.) were soaked in 5% HNO3 overnight.  These 
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cleaned bottles and pipette tips were rinsed with deionized water (18.2 ΜΩ, Millipore) 

and allowed to dry before use.   

Reagents.  Fuming nitric acid and concentrated hydrofluoric acid (ULTREX II, 

JT Baker) were further purified by in-house sub-boiling distillation.  The acids underwent 

a minimum of two cycles (four half turns) inside Teflon stills (Savillex).  The etch 

solutions had HNO3 at 1% in deionized water with HF at 0.1, 0.25 or 0.5%.   The etch 

solution was prepared daily.  The wash solution was 0.1% HNO3 in deionized water.  A 

multielement standard with concentrations of 1 ppb As, Ba, Cd, Cr, Co, Cu, Mn, Mo, Pb,  

Sr, Zn (Varian, 50 mg/L) Ce, Dy, Er, Ru, Th, Ti, U, Yb (PlasmaCHEM, 1000 mg/L) and 

10 ppb Ca and Ir (PlasmaCHEM, 1000 mg/L) was prepared weekly.  Ir and Ru were the 

internal standards used for quantification for Ca and the trace elements, respectively.  All 

standards were prepared in the same solution matrix as the samples.  Trace element 

concentrations in the solid were related back to the major element concentration, Ca, to 

reflect the overall composition of the solid. 

Recovery Study.  The dissolution procedure was performed on pure quartz glass 

to evaluate the reproducibility of handling sub-ppb solutions cleanly.  The diamond cut 

hole (5 mm diameter, ~0.5 mm depth) was cleaned with 10 µL of etch solution.  A blank 

was then prepared using the dissolution procedure described previously for 10 and 5 

seconds with an etch acid of 0.5% HF in 1.0% HNO3.  The hole was then spiked with 5 

µL of 100 ppb multielement solution and allowed to dry in the clean hood.  The residue 

was re-dissolved in 0.5% HF in 1% HNO3, as if the metals came from the quartz.  These 

samples were diluted so that the recovered trace metals would be at a concentration of 

~0.25 ppb. 
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ICP-MS Measurements.  A magnetic sector instrument (Finnigan, Element 1) 

was used in medium resolution (m/∆m = 4000) for all experiments.  A PFA pneumatic 

nebulizer (PFA-100, Elemental Scientific, Inc., sample uptake 100 µL/min) and a Teflon, 

Scott-type, double-pass spray chamber (ESI) were used for sample introduction.  

Platinum tipped sampler and skimmer cones were used due to the inert properties of 

platinum in the presence of HF.  ICP operating conditions were adjusted to maximize 

signals for 7Li, 115In and 238U at a forward power of 1200W.  The detector remained in 

counting mode for all experiments.  The 44Ca isotope was monitored because of the few 

polyatomic interferences.  The mass spectrometer was operated under electrostatic 

scanning conditions (mass window 150%, 20 samples per peak, 16 runs per sample, 

sample time 0.01 s).   

 

RESULTS AND DISCUSSION 

Sample Depth Removed.  The depth of sample removed is estimated as follows 

using values measured from a 10 s etch.  Using the measured signals for Ca and the 

internal standard, the volume of the etch solution, and the Ca concentration (8.57%) in 

the sample, the approximate amount of Ca removed is 2.30 µg.  Dividing by the density 

of the NIST glass (2.36 g/cm3), the volume of the solid removed is ~0.001 mm3.  The 

area of the hole is 20 mm2, so the depth removed for the 10 s etch is approximately 500 

Å, or 330 atomic layers.  Calculations are based on the assumption that the glass is being 

etched straight down.  Decreasing etch time and etch acid concentration decreases the 

amount of sample removed. 
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0.5% HF Results, Effect of Etch Time.  Comparisons of measured and certified 

concentrations16 for the removal of 500 (0.5% HF, 10 s) and 300 Å (0.5% HF, 5 s) are 

shown in Figures 1.2 and 1.3, respectively.  In both figures the Zn concentration is high; 

it appears to be removed at a significantly faster rate than the other elements.  This is a 

recurring trend throughout all dissolutions.  Upon closer examination of the 10 s data, the 

Zn concentrations in the solid are twice their true values for seven out of the 11 samples.  

The remaining four show Zn concentrations that are eight to ten fold too high.   Three of 

these four very high values were taken on the same day.  The 5 s etch data (Figure 1.3) 

shows worse precision with five out of nine Zn concentrations that are 15-20 times higher 

than their true values.  The four Zn concentrations that do not follow this trend include 

three that are 25-40 times higher and a single concentration that showed an increase of 

six fold.  A surface contamination problem is unlikely because the same hole was etched 

repeatedly.   Four isotopes of zinc were included in the method, all four isotopes gave the 

same high result every time.  Thus, spectral interferences on Zn are not the problem.  The 

standard reduction potential of Zn is similar to that of Cr but this element does not exhibit 

an inordinately fast removal rate.   Contamination from etch acid and pipette tips would 

have been observed for in the blank.  The bottles were checked for high Zn levels.  The 

zinc standard used to make the multielement solution was compared to a second zinc 

standard to ensure that the standard itself was not contaminated.    

Although agreement is better for the other elements, it could be conceived that the 

removal rates for all the elements are not uniform.  If we assume the errors in etch time 

and pipette volume are the same for all dissolution steps, variations in the error bars 

should be minimal.  However, this is not the case.  Arsenic, Cu, Cr, Mo and Ti have 
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uncertainties that fall in the range of 20-50%.  Cu and Cr are common components of 

dust.17 Although all sample preparation was completed in the clean hood, analysis of the 

sample is done outside of the clean hood.  Care was taken to cap the bottle during sample 

introduction, but a single dust particle can cause significant contamination at parts per 

trillion concentrations.   The remaining elements have standard deviations that are 15% or 

better.   

Recovery Results.  Recovery data on quartz glass is presented in Table 1.1.  It is 

shown that most elements have acceptable recovery results between 75 and 100%.  The 

results for the 10 s etch are lower than the results for the 5 s etch but this is within the 

standard deviations of day to day results in the NIST 612 recovery experiments.  It is 

interesting to note that the recovery results for Zn are not significantly high for this study.  

Since the same sample preparation environment and the same cleaning techniques for the 

acids, bottles and pipette tips were used in both the NIST 612 and the quartz dissolutions, 

contamination from these sources is not considered a big problem.  This further weakens 

the argument that the high result for zinc is attributed to contamination.  It is also evident 

from the quartz recoveries that these small amounts can be handled reproducibly.    

Effect of HF Concentration.  In addition to time, it is possible to regulate the 

amount of sample removed by varying HF concentration.  All recovery results, except 

Zn, are within the range of 80-140% for the removal of 150 Å (0.25% HF, 5 s) as shown 

in Figure 1.4.  The net intensities for Ti were lower than 3σ of the blank despite repeated 

attempts to improve its detection limit.  Titanium is an element that requires HF to remain 

oxidized in solution.  The lower concentration of HF in the final solution could account 

for its low sensitivity.  For the removal of 70 Å (0.1% HF, 5 s) as shown in figure 1.5, the 
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limitation of this experiment has been reached.  About half the elements are removed at 

about the same rate as the matrix element.  The remaining elements have net intensities 

lower than 3σ of the blank. 

 

CONCLUSION  

 The use of this controlled dissolution method to determine trace metal 

concentrations from thin solid layers is reliable for removal depths of 300 Å or more.   

Zinc is shown to be a problem element for all dissolutions.  For removal depths of 150 Å, 

Ti was below the detection limit for all attempts.  Removal of 70 Å or less can be done 

but sensitivity for about half of the trace elements observed will be compromised.  For 

the elements that could be quantified, their removal rates were comparable to the matrix 

element except for Zn and Cu.  It appears that the limit of this technique has been 

reached.   
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Figure 1.1  Illustration of the controlled dissolution set up for the etching of the glass 
sample. 
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Figure 1.2  Comparison of measured and certified concentrations for (a) all elements 
investigated and for (b) all elements investigated except Zn in NIST 612 glass.  The etch 
volume is 2.0 µL.  The etch time is 10 seconds.  The etch solution is 0.5% HF 1.0% 
HNO3.  Error bars are for n = 6 to 11 separate measurements. 
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Figure 1.3  Comparison of measured and certified concentrations for (a) all elements 
investigated and for (b) all elements investigated except Zn in NIST 612 glass.  The etch 
volume is 2.0 µL.  The etch time is 5 s.  The etch solution is 0.5% HF 1.0% HNO3.  Error 
bars are for n = 9 separate measurements. 
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Table 1.1  Recovery of trace metals from quartz glass surface  
 

Element 
Recovery (%) 

10s                                            5s 
Ti 82 76 
Cr 60 81 
Mn 81 108 
Co 79 100 
Cu 96 114 
Zn 89 109 
As 68 95 
Sr 82 94 
Mo 74 80 
Cd 87 94 
Ba 76 92 
Ce 78 94 
Dy 83 105 
Er 85 98 
Yb 90 106 
Pb 84 101 
Th 67 77 
U 90 106 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



www.manaraa.com

19 
 

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Cr Mn Co Cu Zn As Sr Mo Cd Ba Ce Dy Er Yb Pb Th U

M
E

A
S/

C
E

R
T

 (%
)

0

20

40

60

80

100

120

140

160

180

200

Cr Mn Co Cu As Sr Mo Cd Ba Ce Dy Er Yb Pb Th U

M
E

A
S/

C
E

R
T

 (%
)

 
a 

 
 
 

  
 
 

 
  

 
 
 
 
 
 
 

                   b 
 
 

                 
 
  

 
 
 
 
 
 

  
 
 
 

Figure 1.4  Comparison of measured and certified concentrations for (a) all elements 
investigated and for (b) all elements investigated except Zn in NIST 612 glass.  The etch 
volume is 2.0 µL.  The etch time is 5 s.  The etch solution is 0.25% HF 1.0% HNO3.  
Error bars are for n = 4 to 9 separate measurements.   
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Figure 1.5  Comparison of measured and certified concentrations for (a) all elements 
investigated (b) all elements investigated except Zn and Cu (c) all elements investigated 
except Zn, Cu and Pb in NIST 612 glass. The etch volume is 2.0 µL.  The etch time is  
5 seconds.  The etch solution is 0.10% HF 1.0% HNO3.  Error bars are for n = 5 to 9 
separate measurements.  
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CHAPTER 2 
 

CONTROLLED DISSOLUTION OF COPPER AND BRASS LAYERS FOR 

ELEMENTAL ANALYSIS BY INDUCTIVELY COUPLED PLASMA-MASS 

SPECTROMETRY 

 

 

Susan Lorge and R. S. Houk* 

 

 

ABSTRACT 

 Copper, high copper alloy and NIST C1100 brass samples are partially dissolved 

to determine whether trace metals are removed at the same rate as the major element.  

Dissolved trace metals are determined by inductively coupled plasma-mass spectrometry 

(ICP-MS) using a magnetic sector instrument.  Varying nitric acid concentration and etch 

time showed the removal of sample layers of the following depths: 2700 and 2500 Å  for 

the copper,  2000 and 1800 Å  for the high copper alloy, and 150 and 100 Å for the brass.   

The amount of material removed is determined from a major element.  Trace metal 

concentrations were measured relative to the concentration of a major element in the 

solutions to reflect the overall sample composition.  Since the copper and the high copper 

alloy samples did not have certified concentration values, complete dissolutions were also 

needed.  The partial dissolution concentrations were higher than complete dissolution 

concentrations for most trace metals.  This observation indicates that either the trace 

metals are removed at a faster rate than the matrix element or that the trace elements are 

not homogeneous with depth in the sample.   
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INTRODUCTION 

Elemental analysis of thin solid layers is important in the semiconductor and 

material science industries.  X-ray photoelectron spectroscopy (XPS), auger electron 

spectroscopy (AES), and secondary ion mass spectrometry (SIMS) are the classical 

techniques employed for this purpose.  They can provide elemental information from a 

single monolayer of material.1 Although the previously mentioned techniques are more 

common, glow discharge (GD) coupled to optical emission spectroscopy (OES) and mass 

spectrometry (MS) has shown some promise for elemental analysis of thin films (less 

than 10 nm thick).2 These processes do not require the need for sample dissolution but 

matrix matched standards are needed for quantification.   

Controlled dissolution of samples followed by ICP-MS3-6 or TXRF7-9 is often 

used to provide quantitative analysis of surface layers in some materials.  Vapor phase 

decomposition is the primary controlled dissolution method for trace metal determination 

in the semiconductor industry.  The process involves the etching of SiO2 layers and any 

impurities that are present in those layers with concentrated HF vapor.  After an exposure 

times of 20 minutes to 12 hours, the resulting hydrophobic silicon surface is reproducibly 

scanned by an aqueous acid droplet (~100 µL) to collect the condensate.3  The analytical 

environment must be carefully controlled to prevent contamination.   

Sample heterogeneity presents a problem for the quantification of thin solid 

layers. This is evident in the work done by Li and Houk10 in which concentrations 

determined from the controlled dissolution of steel were lower than the certified values 

for several elements (Ta, Nb and Ti).  Laser ablation-inductively couple plasma-mass 

spectrometry (LA-ICP-MS) and scanning electron microscopy (SEM) measurements 
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indicated that these elements were localized in small refractory grains throughout the 

matrix. 

As a result of the study by Li and Houk10, it was believed a simpler matrix would 

provide more uniform removal rates for trace metal quantification.  In this study efforts 

were made to investigate the removal rates of trace elements from copper, high copper 

alloy and brass. 

 

EXPERIMENTAL 

Partial Dissolution Procedure for Copper and High Copper Alloy.  As shown 

in Figure 2.1, a hole (5 mm diameter, ~5 mm depth) was bored into the metal to hold the 

etch solution.  Pure copper and high copper alloy (Ames Laboratory machine shop) with 

trace metal concentrations of 0.02 to 4 mg/kg (ppm) and 0.1 to 50 mg/kg (ppm) were 

used.  The partial dissolution concentrations were compared with the complete 

dissolution concentrations to compare the rate at which metals are removed from the 

surface.   The same sample was etched repeatedly and the trace metals determined.  A 

fresh sample surface was prepared each time by transferring 10 µL of concentrated 

aqueous HNO3 into the hole, rinsing with deionized water and drying.  The etch acid (8 

µL, 10% HNO3) was then added.  After 5 or 10 seconds, the etch acid was withdrawn and 

diluted to 1 mL with 0.1% HNO3.  The trace metals were determined for three replicate 

samples of the Cu and the Cu alloy.  After trace metal determination, the solution was 

diluted further by a factor of 100 to determine the concentration of the major element, 

Cu, in the partial dissolution.   
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Complete Dissolution Procedure for Copper and High Copper Alloy.  The 

hole shown in Figure 2.1 was cut out for complete dissolution.  The masses of the Cu and 

the high Cu alloy were 0.8245 and 0.4346 g, respectively.  The pieces were dissolved in 

10 mL of concentrated aqueous nitric acid.  Fifteen microliters of this solution was 

diluted to 10 mL with 0.1% HNO3 to determine the trace elements.  Ten microliters of the 

trace element solution was diluted to 100 mL to measure the Cu. 

Dissolution Procedure for Brass.  A hole (~5 mm diameter, ~5 mm depth) was 

bored into the metal sample to hold the etch solution for partial dissolution.  The sample 

was a brass standard reference material (NIST C1100) with trace element concentrations 

that range from 0.001 to 0.106 wt. % and major element concentrations of 67.4 and 32.2 

wt. % for Cu and Zn, respectively.  Since Zn could be monitored using 66Zn (27.90%) at 

the same dilution as the trace metals, its concentration was determined instead of Cu.  

Ten microliters of etch solution (1% or 5% nitric acid) evenly coated the bottom of the 

hole.  After 10 seconds, the etch solution was withdrawn and diluted to 1 mL with the 

0.1% HNO3.   

Reagents.   Fuming nitric acid (~70 %, ULTREX II, JT Baker) was further 

purified by in-house sub-boiling distillation.  The batch was distilled a minimum of four 

times before the acid was used.  For the copper and high copper alloy etch solution, 

fuming nitric acid was diluted with deionized water (18.2 MΩ, Millipore) to 10 % HNO3.  

For the brass etch solution, fuming nitric acid was diluted with deionized water to 1 and 

5%.  The etch solution was prepared daily.  Fuming nitric acid was diluted with deionized 

water to 0.1% HNO3 to use for solvent in all dilutions.   
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For the copper and high copper alloy dissolutions, a multielement standard 

solution with concentrations of 1 ppb Ag, As, Bi, Cd, Cr, Ga, Pb, Sr, Zn  (PlasmaCHEM, 

1000 mg/L) and 10 ppb Cu and In (PlasmaCHEM, 1000 mg/L) was prepared weekly.  Ga 

and In were the internal standards used for quantification.  For the brass dissolutions, a 

multielement standard with concentrations of 1 ppb Be, Al, Si, Mn, Fe, Ni, Zn, As, Ag, 

Cd, Sn, Ir, Pb was prepared weekly.  Ir was the internal standard used for quantification.  

All standards were prepared with the same solution matrix as the samples.  Trace element 

concentrations in the solid were related back to the major element concentration to reflect 

the overall composition of the solid. 

ICP-MS Measurements.  A magnetic sector instrument (Finnigan Element 1) 

was used in medium resolution (m/∆m = 4000) for all experiments.  A PFA pneumatic 

nebulizer (PFA-100, Elemental Scientific, Inc., sample uptake100 µL/min) and a Teflon, 

Scott-type, double-pass spray chamber (ESI) were used for sample introduction.  

Platinum tipped sampler and skimmer cones were used.  ICP operating conditions were 

optimized to maximum signal for 7Li, 115In and 238U at a forward power of 1200 W.  The 

minor isotopes of the major elements were monitored so that the detector could remain in 

counting mode for all experiments.  The mass spectrometer was operated under 

electrostatic scanning conditions (mass window 150%, 20 samples per peak, 16 runs per 

sample, sample time 0.01 s).   
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RESULTS AND DISCUSSION  

Sample Depth Removed.  The depth of sample removed for the partial 

dissolution of copper and high copper alloy is estimated as follows.  Using the 

concentration determined from the internal standard and the volume of the etch solution 

the approximate amount of Cu removed is 39.8 µg.  Dividing by the density of copper 

(8.920 g/cm3), the volume of the solid removed is ~0.004 mm3.  The area of the hole is 20 

mm2, so the depth removed for the 10 s etch is approximately 2000 Å, or 800 atomic 

layers.  For C1100 brass (32.2% Zn), the approximate amount of Zn removed is 1.90 µg.  

Dividing by the density of the brass (8.326 g/cm3), the volume of the solid removed is 

~2x10-4 mm3.  The area of the hole is 20 mm2, so the depth removed for the 10s etch is 

approximately 100 Å, or 50 atomic layers.  These calculations are based on the 

assumption that the samples are being etched straight down.  If undercutting occurs, 

fewer layers would be removed than indicated by these estimates.  Decreasing etch time 

or etch acid concentration decreases the amount of sample removed. 

Copper and High Copper Alloy.  Comparisons of partial and complete 

dissolution concentrations for the removal of 2500 Å Cu (5s), 2700 Å Cu (10s), 1800 Å 

high Cu alloy (5s) and 2000 Å high Cu alloy (10s) are shown in Figures 2.2 and 2.3, 

respectively.  Elements whose net signals are above 3 σ of the blank are shown.  For the 

removal of 2000 Å, Pb concentrations determined from the partial dissolutions agree with 

those determined for the complete dissolutions.  This agreement would indicate that Pb 

dissolves at about the same rate as the Cu matrix.   However, partial dissolution 

concentrations that are two to four times higher than complete dissolution concentrations 

are found for Pb at removal depths of 1800, 2500, and 2700 Å.  At all removal depths, the 
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Cd, Cr, Zn, and Sr concentrations determined for the partial dissolutions were 

significantly higher than those for the complete dissolutions. This disagreement indicates 

that either the trace metals are removed at a faster rate than the Cu matrix atoms or that 

there is an inhomogeneous distribution of trace metals throughout the sample.     

Brass.  Comparisons of measured and certified concentrations for the removal of 

150 Å (5% HNO3) and 100 Å (1% HNO3) are shown in Figures 2.4 a and b, respectively.  

For the removal of 150 Å, partial dissolution concentrations agree well with the certified 

value for Mn, Ni and Cd.  Apparently, these metals are removed at about the same rate as 

the reference element, Zn.  Iron, As, Pb and Bi show partial dissolution results that are 

two to seven times higher than the certified values.  Apparently, these elements are 

removed at a faster rate than the major component Zn.  For the removal of 100 Å, Ni, Cd 

and Sn show removal rates similar to Zn.  Aluminum, Mn, Fe, As, Pb and Bi are removed 

at a faster rate than Zn.  For Ag, the concentrations determined from the partial 

dissolution are lower than the certified values, indicating that this element dissolves more 

slowly than Zn.  

 Compared to the copper and high copper alloy results, the more metals detected 

and the better agreement between measured and certified values shown in this brass 

sample are probably attributed to the higher concentration and more homogeneous 

distribution of trace metals in the original sample and to the fewer dilution steps needed 

for quantification.     
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Figure 2.1  Illustration of the controlled dissolution set up for the etching of the copper, 
high copper alloy and NIST C1100 brass samples. 
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Figure 2.2  Comparison of partial and complete dissolution concentrations for elements 
detected in copper at etch times of (a) 5 and (b) 10 seconds.  The etch volume is 8.0 µL.  
The etch solution is 10.0% HNO3.  Error bars are for n = 5 to 8 separate partial 
dissolution measurements and n = 3 separate dissolution measurements.  Note change to 
logarithmic scale. 
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Figure 2.3  Comparison of partial and complete dissolution concentrations for elements 
detected in the high copper alloy at etch times of (a) 5 and (b) 10 seconds.  The etch 
volume is 8.0 µL.  The etch solution is 10.0% HNO3.  Error bars are for n = 5 to 9 
separate partial dissolution measurements and n = 3 separate complete dissolution 
measurements.  Note change to logarithmic scale in (a). 
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Figure 2.4  Comparison of measured and certified concentrations for elements detected in 
Brass C1100 at etch acid concentrations of (a) 5% and (b) 1% HNO3.  The etch volume is 
10.0 µL.  The etch time is 10 seconds.  Error bars are for n = 3 to 6 separate 
measurements. 
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GENERAL CONCLUSION 

The focus of this work was to use a controlled dissolution procedure to determine 

the elemental composition of surface layers.  The concentration of trace elements whose 

removal rates are comparable to the major element removal rate can be determined 

accurately.  Conversely, removal rates which are not consistent with the major element 

removal rate result in a misrepresentation of the trace metal concentration in the sample.  

For the copper, high copper alloy and NIST C1100 brass matrices, the partial dissolutions 

gave an overrepresentation for most of the trace metals present in the sample.  No 

optimization was done on theses matrices because too few elements shared the same 

removal rate as the matrix element.  NIST 612 glass provided a sample matrix in which 

trace metal concentrations, with the exception of zinc, could be determined from the 

partial dissolution alone at removal depths of 300 Å or more.  With lower acid 

concentration and etch time, the amount of sample removed was reduced to 70 Å, 

however, half the elements had net intensities lower than 3 σ of the blank.   

Future work would include an attempt to remove fewer than 70 Å with a lower 

acid concentration.  The sample would need to be diluted less extensively.  However, this 

may lead to matrix effect issues.  Also, a look at the removal of trace metals from other 

oxide matrices may be of some interest. 
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